Simultaneous Optimization of both Node and Edge Conservation in Network Alignment via WAVE
نویسندگان
چکیده
Network alignment can be used to transfer functional knowledge between conserved regions of different networks. Typically, existing methods use a node cost function (NCF) to compute similarity between nodes in different networks and an alignment strategy (AS) to find high-scoring alignments with respect to the total NCF over all aligned nodes (or node conservation). But, they then evaluate quality of their alignments via some other measure that is different than the node conservation measure used to guide the alignment construction process. Typically, one measures the amount of conserved edges, but only after alignments are produced. Hence, a recent attempt aimed to directly maximize the amount of conserved edges while constructing alignments, which improved alignment accuracy. Here, we aim to directly maximize both node and edge conservation during alignment construction to further improve alignment accuracy. For this, we design a novel measure of edge conservation that (unlike existing measures that treat each conserved edge the same) weighs each conserved edge so that edges with highly NCF-similar end nodes are favored. As a result, we introduce a novel AS, Weighted Alignment VotEr (WAVE), which can optimize any measures of node and edge conservation, and which can be used with any NCF or combination of multiple NCFs. Using WAVE on top of established state-of-the-art NCFs leads to superior alignments compared to the existing methods that optimize only node conservation or only edge conservation or that treat each conserved edge the same. And while we evaluate WAVE in the computational biology domain, it is easily applicable in any domain.
منابع مشابه
Systems biology MAGNA11: Maximizing Accuracy in Global Network Alignment via both node and edge conservation
Motivation: Network alignment aims to find conserved regions between different networks. Existing methods aim to maximize total similarity over all aligned nodes (i.e. node conservation). Then, they evaluate alignment quality by measuring the amount of conserved edges, but only after the alignment is constructed. Thus, we recently introduced MAGNA (Maximizing Accuracy in Global Network Alignmen...
متن کاملMAGNA: Maximizing Accuracy in Global Network Alignment
MOTIVATION Biological network alignment aims to identify similar regions between networks of different species. Existing methods compute node similarities to rapidly identify from possible alignments the high-scoring alignments with respect to the overall node similarity. But, the accuracy of the alignments is then evaluated with some other measure that is different than the node similarity use...
متن کاملMultiple network alignment via multiMAGNA+.
Network alignment (NA) aims to find a node mapping that identifies topologically or functionally similar network regions between molecular networks of different species. Analogous to genomic sequence alignment, NA can be used to transfer biological knowledge from well- to poorly-studied species between aligned network regions. Pairwise NA (PNA) finds similar regions between two networks while m...
متن کاملFrom homogeneous to heterogeneous network alignment
Network alignment (NA) compares networks with the goal of finding a node mapping that uncovers highly similar (conserved) network regions. Existing NA methods are homogeneous, i.e., they can deal only with networks containing nodes and edges of one type. Due to increasing amounts of heterogeneous network data with nodes or edges of different types, we extend three recent state-of-the-art homoge...
متن کاملUsing an Evaluator Fixed Structure Learning Automata in Sampling of Social Networks
Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and large size of most social networks make it difficult or impossible to study the entire networ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015